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An extension of the alias sampling technique for distribution functions depending
on a number of parameters was developed. It takes advantage of modern computer
architectures with large amounts of cheap memory, by using discrete representations
of probability distribution functions. The sampling is done by fast interpolation
techniques involving only elementary logical and arithmetical operations, allowing
one to keep a higher degree of accuracy as the grids spacing is controlled by the user.
By this method it is possible to obtain the value of interest by direct interpolation
between the sampled values obtained with the same set of random numbers for
the grid values of the parameters adjacent to the values of interest. Sampling tests
carried for the case of Madire electron multi-scatter angle distribution show that
this method can be successfully used in Monte Carlo codes for sampling complex
probability distributions. © 2000 Academic Press
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1. INTRODUCTION

In a Monte Carlo code for simulating physical processes, as a particle transport si
lation system, a significant part of the running time is spent generating random varial
according to different probability density functions (PDFs). Therefore, in developing st
codes it is necessary to have methods that provide fast algorithms for generating ran
variables according to the various PDFs given by the laws describing the physical |
cesses involved. As the shape of probability distributions and also the form of presente
(mathematical formula, tabulated data, or algorithmic description) can be very differ
from case to case, for rapid development of simulation codes it is very useful to ha\
general method for sampling random variables which can treat all these cases in a uni
manner.
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2. SAMPLING A RANDOM VARIABLE

Theoretically any random variable € (a, b) with probability densityp(x), satisfying
1= f:p(x) dx and cumulative probability distribution

X
F(x) = / p(x’) dx’ (1)
a
can be sampled using the inverse function method or the direct method, which gives
% =FQ, )

where ¢ is a random number uniformly distributed in the interval (0, 1). But to appl
this method it is necessary to have an analytical formula for the inverse furitién
(0, 1)— (a, b), which is possible only in a few particular cases. This disadvantage can
overcome by taking a discretization i points of F ~1 over an equally spaced division of
the interval (0, 1), resulting in a division of the random variable dongait) into equally
probable intervals delimited by the poirts}; _g, wherex; = F*l(iﬁ). For sampling, the
intervali is selected first as the integer part oN], where¢ is a random number uniformly
distributed in (0, 1); then a valuein the selected intervak(, x;.1) is sampled. As a first
approximation a uniformly distributed number

X=1-0)% +tXi1, ()

wheret is the fractional part of¢ N}, can be used. A higher degree of accuracy is achieve
if the linear interpolation formula of probability distribution over the selected interval
used,

i) =A—-wp +up1, 4)

whereu= (X —Xj)/(Xix+1 — Xi), andp; = p(x;). An elegant method using only elementary
operations is described in [1]. First the uniformly distributed valug selected:

X=1X + (1 —t)Xjy1. (5)

Then a second random numbegemuniformly distributed in the interval (Op; + pi+1) is
selected. Iff; (X) > ¢ the valueX is accepted; otherwise the following value is chosen:

X=(1-t)X +tXy1. (6)

In fact this is a modified rejection method exploiting the symmetry properties of line
distributions.

This method of equally probable intervals spacing is fast, as only a few element
operations are involved, but in the case of intervals where the events are less probabl
spacing is larger and the accuracy decreases; moreover, in the case of distributions
as tabulated data the transformations of the original grid to a grid with equally probz
intervals may lead to an avoidable loss of precision. If the point spacing does not corresj
to equally probable intervals then the selection of the interval requires the search a tab
cumulative probabilities, which is a very time-consuming operation.
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2.1. Alias Sampling Method

An alternative to the search operation is the use of the alias sampling method propose
Walker [2, 3]. Suppose we have an arbitrary divisi@}; _g of random variable domain
(a, b) and consider as elementary events the selection of one of the integvas,(). In
the alias sampling method the above elementary events are grouped in pairs of two in ¢
to obtain a table of equally probable compound events. The selection is done in two st
first, as in the method of equally probable intervals such a compound event is samy
and second, from the pair of elementary events one of them is selected, according to
relative probabilities. For a PDF given in tabulated fdsm pi }; _g Wherep; is the density
probability in the point;, such a discretization divides the whole domain iNtintervals
(Xi, Xi+1),i =0, N — 1, each with the probability of selection

N-1

(Xip1—X),  satisfying: 1= Z P. 7)

i=0

P = Pi + Pit+1
2
The compound events are stored in a special data arrangément; _gx—z, into which
to each interval is associated a second intenjaland a real number;. For selecting
the interval, first a compound events selected with equal probabilities, then a secon
random numbet € (0, 1) is used to decide whether the associated intejvéf ¢ >r;)
or the intervali (if ¢ <r;) is selected. An elegant method for making such arrangeme
of data is the Walker algorithm [2]. Successively the arf&y},_gw—7 is searched for
the intervals with the minimumH) and respectively maximun®() probabilities; in fact,
it is sufficient to search for pairs of intervals wheffe< Pae=1/N and Pj > Pae The
compound everitis formed from the interval with the same indieand probabilityP, to
which the intervalj; = j with the probability ¥ N — P, isadded. In this way each compound
event has the probability/N andr; = P, N. The probability of the intervajl, P; is updated
by subtracting the quantity added to the compound ef®enrt- P; — (1/N — P). A new
search is performed, but excluding the interivglist prepared, from the search arid},
and so on, until it becomes empty. By mathematical induction it can be proved that
arrangement is always possible.

3. THE CASE OF PARAMETRIZED PDF s

3.1. Direct Interpolation

Let us consider first the case of a random variabth the PDF depending on a single
parametemp(X, «), wherew is a real number taking values in the intervahf,, omaxl-
In this case a grid with a convenient spacing, linear or logarithmic, is créaigd 5.
For techniques such as the inverse function method, or equally probable intervals spe
method, a sample at a given paink [«;, «j 1) can be determined by interpolating samples
taken from distributions in the pointg ande; 1 using the same random numbers.

Briefly, the method is as follows: using the same random numbers, the véjues-
cording to distributionp(x, ax) andX», according to distributiomp(x, ax,1), are selected.
The sampled value for the distributiqr{x, «) is finally given by

o — Ok

X = (1 — U)Xy + UKo, whereu= ———, U =1-u. (8)
Qk41 — Ok
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By this procedure the random variable is obtained by interpolation between the inve
of the cumulative distribution functions

Fl(y, @) = UF Yy, ) + UF1(y, axs). 9)

And if for oy the random variable takes values inside the inte¢aglby), and foray 1

it takes values inside the interval( 1, bxy1), then the interpolated random variable will
take values inside the interval'@y + a1, U'bx + ub.1), an adjustment of the domain
in which the interpolated variable lies, also being obtained.

This kind of interpolation fails if it is applied directly with the alias sampling methoc
Therefore it was considered that the major difficulty with the alias sampling technique
that conventional interpolation between tabulated distribution is not possible [1] since
specially formatted distribution no longer allows direct manipulation of the probabilities

3.2. Statistical Interpolation

Aninterpolation technique that can be used in conjunction with the alias sampling met
is statistical interpolation. It gives a way of approximating an interpolated distribution
sampling from one of the two neighboring distributions. Given two known distributions
ak anday, 1 and a pointx € [ak, aky1), choosing a random numbere (0, 1), statistical
interpolation calls for sampling from the distribution if

(04 —
< Gk .

; (10)
Ok41 — Ok
otherwise they, ; distribution is used. In fact, the statistical interpolation overlaps, wit
different weights, the PDFs at the extreme points of the interval. The PDF of the ranc
variable by this procedure is

P(x, @) = u'p(X, ak) + Up(X, ax+1), (11)

whereu andu’ have the same meaning as in (8). The values domain of the interpola
random variable is theay, bx) U (aky1, bry1).

Due to its simplicity, statistical interpolation with alias sampling is very convenient f
use with PDFs given in tabulated form. According to [1, 4] statistical interpolation yiel
satisfactory results for various PDFs used for Monte Carlo simulation of particle transp
but in certain cases the simple weighted superposition is not recommended. In such
additional rescalings or application of variable transformations must be considered in o
to improve the results (see Fig. 1).

3.3. Extension of Alias Sampling Technique to Direct Interpolation

The impossibility of applying the alias sampling technique with conventional (direc
interpolation is due to the attempt to use independently the arrangements for interva
lection at each parameter valeganday 1. This inconvenience can be avoided if for both
valuesoy anday. 1 an unigue arrangement for sampling the intervals is used, with only t
values at the extreme points of the intervals being different.

More precisely, if at the start for each valueof the parameter we have a division of the
random variable domain into the poirfts <"}, i = 0, N with corresponding probability
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FIG. 1. Comparisons between direct interpolation (a) and statistical interpolation (b) for a PDF hav
a peak with position depending on a parameter. This example shows the case of a Gpussiaw) =
(1/o~/27) exp[—(x — w)?/20?], in which u was taken as a parameter anek 1. The plotted surfaces repre-
sent the interpolated PDF by the two methddg, 1) between distributionp(x, —1.5), respectivelyp(x, 1.5).
Vertical bars represent the sampled distributions obtained for the peirfd.25, while the thick line represents
the theoretical distribution in the same point.

densitie p*“"}, and with the alias sampling arrangemgift’. r*'}; _g—;, then for each
next value of the parameteg, ; an additional divisior{xi(k’z)} is created with the condition
that the probabilities for corresponding intervals to be the same as for th{eﬁrf‘a} atthe
parameter valuey.

If for o the values of the cumulative distribution function are

Q =F(x"Y &), i=0N, (12)
then foray.4 the pointsx? are given by
x*? = FXQ, axr1), i =0, N. (13)

Finally the valuespi(k’z) = p(x 7, aks1) are computed.

By this procedure the alias sampling arrangement obtained with the Walker algorit
for the division{xi(k’l)} for ay, is identical with the corresponding arrangement obtaine

k.2)
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FIG. 2. Graphical representation of sampling arrangements for a parametrized distribution. The plotted
faces represent the probability density functi, «) as given by the sampling arrangements divisions points fo
two consecutive grid intervals. For the firstinterval [ox 1) the plotted surface is given by the poimxﬁ“l’, pi“‘*l’}
for ay parameter value an*?, p*?} for e.;. For the second intervakf.;, o) the plotted surface is given
by the pointgx***?, p**2} for aye,; and{x*"*?, p***?} for ey,

for the division{xi(k’z)} for aw1. A graphical representation of this kind of arrangement i
given in Fig. 2.
For a parameter point € [ak, ok 1) the sampling is done as follows:

e Using a first random number an intervaccording to alias sampling arrangemen
(i, r®} prepared fory is selected.

e Then using a second sequence of random numbers the following values are sam
%, for a, according to the interpolated PDF between pairts”, p*?) and(x*., p*-),
and X,, for ax.1, according to the interpolated PDF between po'(ané’z), pi‘k’z)) and

(k,2) (k,2)

(%175 Pif)-

¢ Finally the value of is obtained by interpolation between poiiifs, ax) and(Xz,

aks1) using Eq. (8).

In the case when the random variable PDF depends on two pararpéters ), it is
necessary to interpolate between the points of a two-dimensiondbgrig }, k=0, N, | =
0, N;. In this case if for each grid poirttz, 81) with k < N, | < N is given a division of
random variable domaifx”}; _g; with PDF valueg p™™}; _g, and with alias sampling ar-
rangementji, i}, _g;x—z using analogue relations with (12), (13) three additional divisior
are constructedx®}, {p®} for parameter pointsaii1, B), (X2}, (P} for (ax, Bi+1)
and{x?}, {p®} for (as1. Bi+1) in order to obtain intervals with probabilities identically
with those given by the divisio{xi(l)} at the parameter poidy, B). Here for a more fluent
reading thek, | superscripts were skipped.

The selection method for the parameters paé [ak, ak+1) andg € [Bi, Bi+1) is done
by following steps:

o Afirstrandom number is used for sampling the intenadcording to alias sampling
arrangementjj, rj} obtained for the gridxi(l)} at the parameter poirtiry, £).

e Then using the same sequence of random numbers the following values are :

pled: %, according to the interpolated PDF between po{wfé, p') and(x-(fl, pi(.lﬁl), Ko

1
according to the interpolated PDF between poir8, p®) and(x'?;, p,), %3 according
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to the interpolated PDF between poitt§”, p®) and(x'?;, p@,), and finallyx, according

to the interpolated PDF between poits”, p'¥) and(x'?;, p?)).
o Finally X is obtained by interpolating between the grid poii¥s o, 8), (X2, ak+1,
B1), (X3, ax, Bi1), and(Xa, a1, fi+1) Using the equation

X = U'v'X1 + Uv'Xo 4+ U'vXz + UvXy, (24)
where
o — Ok
u= _, u/ = 1 - u,
k41 — Ok
— b
v PR
B — B

These algorithms based on the extension of the alias sampling method for random
pling of parametrized probability distributions were coded using the C++ object-orien
programming language. Two class hierarchies were defined; the first is introduced to
vide an uniform interface to the various probability distributions given in different forn
(mathematical formula, tabulated data, or algorithmic description) and the second c
hierarchy is used for alias sampling arrangements preparation and runtime sampling
zero, one, or two parametric PDFs.

4. APPLICATION FOR SAMPLING THE MOLI ERE ELECTRON
MULTIPLE SCATTERING DISTRIBUTION

The multi-scatter angular distribution for swift charged particles passing through ma
usually is written in a two parametric forg(@, T, s) d2, wheref is the angular deflection,
our random variable, and the parametersTarthe average kinetic energy during the step
ands, the step length. For distributions using the small angle approximation, such as
Moliere theory, this is equivalent with the forf@, T, )0 db.

In the Moliere [5-7] theory, by a change of variable, the above two parametric form
reduced to a single parameter one

f0,T,s)0d9 = (¥, B)9 dv, (15)
where
0
9 = (16)
Xc\/E

is called the reduced angle, aBdand x. are defined by the equations

B—InB=1In Qo a7
S

Xc = chﬂziEv (18)

whereb, and . are constants which depend only on the medium in which the transp
takes place2p can be interpreted as the number of atomic collisions that contribute to 1
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scattering and is related to the step length by the equation

b.s
Qo = ﬁ (19)
for elements
pZY3(Z +€) 1 1
b, = 670233 . 20
c A 170000178 22 M | (20)

[pZ(Z
Xec = 0.3961 LAJ“” [MeV - cm %2, (21)

wherep is the density in gcn?®, s is the step length in cniZ is the atomic number of the
element, andA is the atomic mass in atomic mass unisis the electron total energy in
MeV, and¢ is a correction term introduced to take into account the inelastic scatterir
with atomic electrons and it is usually taken equal to unity; an additional correctig to
is given by Fano [8].

The Moliere function is given as a series expansion,

1 1
fu@, B) = fO®) + 5@+ 5 F@W)+---, (22)
where
1 00 L, 772 '72 n
£ :_/ Y ST RS 2
@) = | Jo(n)e s ) dn; (23)

Jo is the zeroth order Bessel function. In Eq. (23) fiee 0 we have a Gaussian curve
fO ) =277, (24)

but forn > 1 the Moliére functions must be computed using numerical methods. Terms u
of order two proved to be sufficiently accurate.

Moliere considered his theory valid f6ty > 20. Originally derived as a small-angle
theory, Moliére’s multiple-scattering theory has been modified by Bethe to predictaccura
large-angle scattering by multiplying the right side of Eq. (15) with a correction ter
4/0/sind. The minimum step sizgn, required to ensure sufficient number of scattering
is given by

Smin = [cm], (25)

be
with Qg =20, while the maximum step size derived by Bethe is

EZﬂA
B XeeIn(be Ezﬂz/ch)

For testing the extension of the alias sampling method, both cases darildiistribu-
tions, the two parametric fornfi(6, T, s) and the single parameter forfiy, (%, B), were
considered.

Inthe case of the single parameter form, due to the requirement of preparing only mat
independent sampling arrangements for a unidimensional grid, the memory usage is

Smax [cm]. (26)
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FIG.3. Comparison between M@ie function sampled distribution (vertical bars) and theoretical distributio
(continuous curve) for the sanBe= 4.7 parameter value. The drawn surface represent§tii@, B) distribution
as it is given by the sampling arrangements grid points Bith 3.4, respectivelyB =5.9.

low, but the sampling speed suffers because additional calculations of the deflection a
as a function of the reduced angle are required and, also, a rejection loop for the B
correction factok/6/sind must be considered. A graphical comparison between a samp
distribution and the corresponding theoretical cufyg?, B) is shown in Fig. 3.

The use of the two parametric form has the advantage of direct sampling of ang
deflection, but with a large amount of memory usage because, for each material consic
in the simulation, sampling arrangements for a two-dimensional grid must be prepared
example of using this form for sampling of Melié multi-scatter angle distribution is given
in Fig. 4.

Probability density

0 0.2 0.4 0.6 0.8 1 1.2
6 (rad)

FIG.4. Comparison between the sampled values (histogram) of the two parametric form efé/uliltiple-
scattering distributionf (9, T, s) and the theoretical distribution (continuous curve) for 2.8 MeV electrons traver:
ing 3.0 x 10-2cm of germanium. Dotted lines represent the distributions at the four parametric points betw
which the interpolations were made; these are the corners of the square with left-bottom corner (2.42 |
2.74 x 1072 cm) and right-top corner (3.00 MeV,22 x 1072cm).
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TABLE |
Comparison of Running Speed Obtained with Different Versions of Alias Sam-
pling Technique and with the Classical Approach Used in EGS, for the Mokre
Electron Multiple-Scattering Distribution

Running speed (generated values per second)

Method 386DX 40 MHz Pentium 133 MHz Digital Alpha 233 MHz
C-EGS 4.1 1C¢° 4.91x 10¢ 8.05x 10*
AS1 3.32x 10° 4.34x 10¢ 7.20x 10
ASls 4.40x 10° 5.04x 10* 8.43x 10
AS2 3.54x 10° 5.96x 10* 8.68x 10*
AS2s 6.39% 10° 7.99x 10* 14.35x 10*

Note.In all cases the same random number generator was used.

A test program was written and run on UNIX systems (Linux on Intel platforms at
Digital UNIX on a Digital Alpha workstation). Several cases were tested. The first ca:
were the single parameter form of the Mok distribution (AS1) and the two parametel
form (AS2), in which for the PDF interpolation inside the selected intervals the meth
given by Egs. (5) and (6) was used. Second, two simplified versions (AS1s, AS2s), wi
use Eq. (3) for the PDF interpolation, were considered; in this case it is no longer neces
to store the probability density valuepi(k’l), pi(k’z), etc.), and the loss of precision can be
compensated by taking more refined grids. Finally, a classical approach (C-EGS) base
the method used in the EGS system, as described in [9], was considered.

A comparison of the running speed results is presented in Table I. As was mentic
before, in the case of the single parameter form (AS1, AS1s) the sampling speed su
due to the additional calculations made. An important factor for improving the score:
the speed of retrieving data from memory. This fact is emphasized by comparing the sc
obtained on the 386 system with those obtained on the enhanced systems based on P¢
or Digital Alpha. During the generation of a random variable, repeated readings of ¢
spread on a relatively large amount of computer memory are made. Therefore special
must be taken during implementation, in order to use efficiently the CPU internal or extel
memory cache. The use of structured types of data and dynamical memory allocatic
group together data needed for sampling of a certain random variable value (alias sam
arrangements and grids with interpolation points) can lead to a significant increase in sy
up to doubling it, according to our experience. Additional optimizations, which were r
considered here, such as direct sampling of memory addresses, rather than operatin
indices for intervals sampling, can also speed up the algorithm.

5. CONCLUSION

A method of direct interpolation for sampling of random variables with parametriz
probability distributions that allows the use of the alias sampling technique is presen
It takes advantage of modern computer architectures with large amounts of cheap
fast memories by using discrete representations of probability distribution functions.
sampling is done by fast interpolation techniques involving only elementary logical
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arithmetical operations, allowing for a higher degree of accuracy, as the grid spacin
controlled by the user.

This method can be successfully used as an alternative to the sampling arrangen
commonly used in Monte Carlo codes where, for complex probability distributions, frc
case to case, after a careful study of function properties, combinations of sampling t
niques (e.g., superposition, rejection and inverse function methods) are used. The me
proposed here allows one to develop flexible Monte Carlo simulation codes, while the
plication of specific sampling techniques like those mentioned above makes the resu
code strongly dependent on the theories used.
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