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An extension of the alias sampling technique for distribution functions depending
on a number of parameters was developed. It takes advantage of modern computer
architectures with large amounts of cheap memory, by using discrete representations
of probability distribution functions. The sampling is done by fast interpolation
techniques involving only elementary logical and arithmetical operations, allowing
one to keep a higher degree of accuracy as the grids spacing is controlled by the user.
By this method it is possible to obtain the value of interest by direct interpolation
between the sampled values obtained with the same set of random numbers for
the grid values of the parameters adjacent to the values of interest. Sampling tests
carried for the case of Moli`ere electron multi-scatter angle distribution show that
this method can be successfully used in Monte Carlo codes for sampling complex
probability distributions. c© 2000 Academic Press
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1. INTRODUCTION

In a Monte Carlo code for simulating physical processes, as a particle transport simu-
lation system, a significant part of the running time is spent generating random variables
according to different probability density functions (PDFs). Therefore, in developing such
codes it is necessary to have methods that provide fast algorithms for generating random
variables according to the various PDFs given by the laws describing the physical pro-
cesses involved. As the shape of probability distributions and also the form of presentation
(mathematical formula, tabulated data, or algorithmic description) can be very different
from case to case, for rapid development of simulation codes it is very useful to have a
general method for sampling random variables which can treat all these cases in a uniform
manner.
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2. SAMPLING A RANDOM VARIABLE

Theoretically any random variablex ∈ (a, b) with probability densityp(x), satisfying
1= ∫ b

a p(x) dx and cumulative probability distribution

F(x) =
∫ x

a
p(x′) dx′ (1)

can be sampled using the inverse function method or the direct method, which gives

x̂ = F−1(ζ ), (2)

whereζ is a random number uniformly distributed in the interval (0, 1). But to apply
this method it is necessary to have an analytical formula for the inverse functionF−1:
(0, 1)→ (a, b), which is possible only in a few particular cases. This disadvantage can be
overcome by taking a discretization inN points ofF−1 over an equally spaced division of
the interval (0, 1), resulting in a division of the random variable domain(a, b) into equally
probable intervals delimited by the points{xi }i=0,N , wherexi = F−1( i

N ). For sampling, the
intervali is selected first as the integer part of [ζN], whereζ is a random number uniformly
distributed in (0, 1); then a valuêx in the selected interval (xi , xi+1) is sampled. As a first
approximation a uniformly distributed number

x̂ = (1− t)xi + t xi+1, (3)

wheret is the fractional part of{ζN}, can be used. A higher degree of accuracy is achieved
if the linear interpolation formula of probability distribution over the selected interval is
used,

fi (x) = (1− u)pi + upi+1, (4)

whereu= (x− xi )/(xi+1− xi ), andpi = p(xi ). An elegant method using only elementary
operations is described in [1]. First the uniformly distributed valuex̂ is selected:

x̂ = t xi + (1− t)xi+1. (5)

Then a second random numberζ uniformly distributed in the interval (0,pi + pi+1) is
selected. Iffi (x̂)> ζ the valuex̂ is accepted; otherwise the following value is chosen:

x̂ = (1− t)xi + t xi+1. (6)

In fact this is a modified rejection method exploiting the symmetry properties of linear
distributions.

This method of equally probable intervals spacing is fast, as only a few elementary
operations are involved, but in the case of intervals where the events are less probable the
spacing is larger and the accuracy decreases; moreover, in the case of distributions given
as tabulated data the transformations of the original grid to a grid with equally probable
intervals may lead to an avoidable loss of precision. If the point spacing does not correspond
to equally probable intervals then the selection of the interval requires the search a table of
cumulative probabilities, which is a very time-consuming operation.
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2.1. Alias Sampling Method

An alternative to the search operation is the use of the alias sampling method proposed by
Walker [2, 3]. Suppose we have an arbitrary division{xi }i=0,N of random variable domain
(a, b) and consider as elementary events the selection of one of the intervals (xi , xi+1). In
the alias sampling method the above elementary events are grouped in pairs of two in order
to obtain a table of equally probable compound events. The selection is done in two steps:
first, as in the method of equally probable intervals such a compound event is sampled,
and second, from the pair of elementary events one of them is selected, according to their
relative probabilities. For a PDF given in tabulated form{xi , pi }i=0,N wherepi is the density
probability in the pointxi , such a discretization divides the whole domain intoN intervals
(xi , xi+1), i = 0, N − 1, each with the probability of selection

Pi = pi + pi+1

2
(xi+1− xi ), satisfying: 1=

N−1∑
i=0

Pi . (7)

The compound events are stored in a special data arrangement{ ji , ri }i=0,N−1, into which
to each intervali is associated a second intervalji and a real numberri . For selecting
the interval, first a compound eventi is selected with equal probabilities, then a second
random numberζ ∈ (0, 1) is used to decide whether the associated intervalji (if ζ > ri )
or the intervali (if ζ ≤ ri ) is selected. An elegant method for making such arrangement
of data is the Walker algorithm [2]. Successively the array{Pk}k=0,N−1 is searched for
the intervals with the minimum (Pi ) and respectively maximum (Pj ) probabilities; in fact,
it is sufficient to search for pairs of intervals wherePi < Pave= 1/N and Pj > Pave. The
compound eventi is formed from the interval with the same indexi and probabilityPi to
which the intervalji = j with the probability 1/N− Pi is added. In this way each compound
event has the probability 1/N andri = Pi N. The probability of the intervalj, Pj is updated
by subtracting the quantity added to the compound eventPj ← Pj − (1/N− Pi ). A new
search is performed, but excluding the intervali , just prepared, from the search array{Pk},
and so on, until it becomes empty. By mathematical induction it can be proved that this
arrangement is always possible.

3. THE CASE OF PARAMETRIZED PDF s

3.1. Direct Interpolation

Let us consider first the case of a random variablex with the PDF depending on a single
parameterp(x, α), whereα is a real number taking values in the interval [αmin, αmax].
In this case a grid with a convenient spacing, linear or logarithmic, is created{αk}k=0,Nα

.
For techniques such as the inverse function method, or equally probable intervals spacing
method, a sample at a given pointα ∈ [αi , αi+1) can be determined by interpolating samples
taken from distributions in the pointsαi andαi+1 using the same random numbers.

Briefly, the method is as follows: using the same random numbers, the values,x̂1, ac-
cording to distributionp(x, αk) andx̂2, according to distributionp(x, αk+1), are selected.
The sampled value for the distributionp(x, α) is finally given by

x̂ = (1− u)x̂1+ ux̂2, whereu = α − αk

αk+1− αk
, u′ = 1− u. (8)



ALIAS SAMPLING METHOD FOR PARAMETRIZED PDFs 615

By this procedure the random variable is obtained by interpolation between the inverse
of the cumulative distribution functions

F̃−1(y, α) = u′F−1(y, αk)+ uF−1(y, αk+1). (9)

And if for αk the random variable takes values inside the interval(ak, bk), and forαk+1

it takes values inside the interval (ak+1, bk+1), then the interpolated random variable will
take values inside the interval (u′ak + uak+1, u′bk + ubk+1), an adjustment of the domain
in which the interpolated variable lies, also being obtained.

This kind of interpolation fails if it is applied directly with the alias sampling method.
Therefore it was considered that the major difficulty with the alias sampling technique is
that conventional interpolation between tabulated distribution is not possible [1] since the
specially formatted distribution no longer allows direct manipulation of the probabilities.

3.2. Statistical Interpolation

An interpolation technique that can be used in conjunction with the alias sampling method
is statistical interpolation. It gives a way of approximating an interpolated distribution by
sampling from one of the two neighboring distributions. Given two known distributions at
αk andαk+1 and a pointα ∈ [αk, αk+1), choosing a random numberζ ∈ (0, 1), statistical
interpolation calls for sampling from theαk distribution if

ζ ≤ αk+1− α
αk+1− αk

; (10)

otherwise theαk+1 distribution is used. In fact, the statistical interpolation overlaps, with
different weights, the PDFs at the extreme points of the interval. The PDF of the random
variable by this procedure is

p̃(x, α) = u′p(x, αk)+ up(x, αk+1), (11)

whereu andu′ have the same meaning as in (8). The values domain of the interpolated
random variable is then(ak, bk) ∪ (ak+1, bk+1).

Due to its simplicity, statistical interpolation with alias sampling is very convenient for
use with PDFs given in tabulated form. According to [1, 4] statistical interpolation yields
satisfactory results for various PDFs used for Monte Carlo simulation of particle transport,
but in certain cases the simple weighted superposition is not recommended. In such cases
additional rescalings or application of variable transformations must be considered in order
to improve the results (see Fig. 1).

3.3. Extension of Alias Sampling Technique to Direct Interpolation

The impossibility of applying the alias sampling technique with conventional (direct)
interpolation is due to the attempt to use independently the arrangements for interval se-
lection at each parameter valueαk andαk+1. This inconvenience can be avoided if for both
valuesαk andαk+1 an unique arrangement for sampling the intervals is used, with only the
values at the extreme points of the intervals being different.

More precisely, if at the start for each valueαk of the parameter we have a division of the
random variable domain into the points{x(k,1)i }, i = 0, N with corresponding probability
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FIG. 1. Comparisons between direct interpolation (a) and statistical interpolation (b) for a PDF having
a peak with position depending on a parameter. This example shows the case of a Gaussianp(x, µ, σ )=
(1/σ
√

2π) exp[−(x − µ)2/2σ 2], in which µ was taken as a parameter andσ = 1. The plotted surfaces repre-
sent the interpolated PDF by the two methodsp̃(x, µ) between distributionsp(x,−1.5), respectivelyp(x, 1.5).
Vertical bars represent the sampled distributions obtained for the pointµ= 0.25, while the thick line represents
the theoretical distribution in the same point.

densities{p(k,1)i }, and with the alias sampling arrangement{ j (k)i , r (k)i }i=0,N−1, then for each
next value of the parameterαk+1 an additional division{x(k,2)i } is created with the condition
that the probabilities for corresponding intervals to be the same as for the grid{x(k,1)i } at the
parameter valueαk.

If for αk the values of the cumulative distribution function are

Qi = F
(
x(k,1)i , αk

)
, i = 0, N, (12)

then forαk+1 the pointsx(k,2)i are given by

x(k,2)i = F−1(Qi , αk+1), i = 0, N. (13)

Finally the valuesp(k,2)i = p(x(k,2)i , αk+1) are computed.
By this procedure the alias sampling arrangement obtained with the Walker algorithm

for the division{x(k,1)i } for αk, is identical with the corresponding arrangement obtained
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FIG. 2. Graphical representation of sampling arrangements for a parametrized distribution. The plotted sur-
faces represent the probability density functionp(x, α) as given by the sampling arrangements divisions points for
two consecutive grid intervals. For the first interval [αk, αk+1) the plotted surface is given by the points{x(k,1)i , p(k,1)i }
for αk parameter value and{x(k,2)i , p(k,2)i } for αk+1. For the second interval [αk+1, αk+2) the plotted surface is given
by the points{x(k+1,1)

i , p(k+1,1)
i } for αk+1 and{x(k+1,2)

i , p(k+1,2)
i } for αk+2.

for the division{x(k,2)i } for αk+1. A graphical representation of this kind of arrangement is
given in Fig. 2.

For a parameter pointα ∈ [αk, αk+1) the sampling is done as follows:

• Using a first random number an intervali according to alias sampling arrangement
{ j (k)i , r (k)i } prepared forαk is selected.
• Then using a second sequence of random numbers the following values are sampled:

x̂1 forαk, according to the interpolated PDF between points(x(k,1)i , p(k,1)i )and(x(k,1)i+1 , p(k,1)i+1 ),
and x̂2, for αk+1, according to the interpolated PDF between points(x(k,2)i , p(k,2)i ) and
(x(k,2)i+1 , p(k,2)i+1 ).
• Finally the value of̂x is obtained by interpolation between points(x̂1, αk) and(x̂2,

αk+1) using Eq. (8).

In the case when the random variable PDF depends on two parametersp(x, α, β), it is
necessary to interpolate between the points of a two-dimensional grid{αk, βl },k=0, Nα, l=
0, Nβ . In this case if for each grid point(αk, βl ) with k< Nα, l < Nβ is given a division of
random variable domain{x(1)i }i=0,N with PDF values{p(1)i }i=0,N , and with alias sampling ar-
rangement{ ji , ri }i=0,N−1 using analogue relations with (12), (13) three additional divisions
are constructed{x(2)i }, {p(2)i } for parameter points(αk+1, βl ), {x(3)i }, {p(3)i } for (αk, βl+1)

and{x(4)i }, {p(4)i } for (αk+1, βl+1) in order to obtain intervals with probabilities identically
with those given by the division{x(1)i } at the parameter point(αk, βl ). Here for a more fluent
reading thek, l superscripts were skipped.

The selection method for the parameters pairα ∈ [αk, αk+1) andβ ∈ [βl , βl+1) is done
by following steps:

• A first random number is used for sampling the intervali according to alias sampling
arrangement{ ji , ri } obtained for the grid{x(1)i } at the parameter point(αk, βl ).
• Then using the same sequence of random numbers the following values are sam-

pled: x̂1 according to the interpolated PDF between points(x(1)i , p(1)i ) and(x(1)i+1, p(1)i+1), x̂2

according to the interpolated PDF between points(x(2)i , p(2)i ) and(x(2)i+1, p(2)i+1), x̂3 according
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to the interpolated PDF between points(x(3)i , p(3)i ) and(x(3)i+1, p(3)i+1), and finallyx̂4 according
to the interpolated PDF between points(x(4)i , p(4)i ) and(x(4)i+1, p(4)i+1).
• Finally x̂ is obtained by interpolating between the grid points(x̂1, αk, βl ), (x̂2, αk+1,

βl ), (x̂3, αk, βl+1), and(x̂4, αk+1, βl+1) using the equation

x̂ = u′v′ x̂1+ uv′ x̂2+ u′vx̂3+ uvx̂4, (14)

where

u = α − αk

αk+1− αk
, u′ = 1− u,

v = β − βl

βl+1− βl
, v′ = 1− v.

These algorithms based on the extension of the alias sampling method for random sam-
pling of parametrized probability distributions were coded using the C++ object-oriented
programming language. Two class hierarchies were defined; the first is introduced to pro-
vide an uniform interface to the various probability distributions given in different forms
(mathematical formula, tabulated data, or algorithmic description) and the second class
hierarchy is used for alias sampling arrangements preparation and runtime sampling for
zero, one, or two parametric PDFs.

4. APPLICATION FOR SAMPLING THE MOLI ÈRE ELECTRON

MULTIPLE SCATTERING DISTRIBUTION

The multi-scatter angular distribution for swift charged particles passing through matter
usually is written in a two parametric formp(θ, T, s) dÄ, whereθ is the angular deflection,
our random variable, and the parameters areT , the average kinetic energy during the step,
ands, the step length. For distributions using the small angle approximation, such as the
Moli ère theory, this is equivalent with the formf (θ, T, s)θ dθ .

In the Molière [5–7] theory, by a change of variable, the above two parametric form is
reduced to a single parameter one

f (θ, T, s)θ dθ = fM(ϑ, B)ϑ dϑ, (15)

where

ϑ = θ

χc

√
B

(16)

is called the reduced angle, andB andχc are defined by the equations

B− ln B = ln Ä0 (17)

χc = χcc

√
s

β2E
, (18)

wherebc andχcc are constants which depend only on the medium in which the transport
takes place.Ä0 can be interpreted as the number of atomic collisions that contribute to the
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scattering and is related to the step length by the equation

Ä0 = bcs

β2
, (19)

for elements

bc = 6702.33
ρZ1/3(Z + ξ)

A
· 1

1+ 0.000178· Z2
[cm−1] (20)

χcc = 0.39612

√
ρZ(Z + ξ)

A
[MeV · cm−1/2], (21)

whereρ is the density in g/cm3, s is the step length in cm,Z is the atomic number of the
element, andA is the atomic mass in atomic mass units.E is the electron total energy in
MeV, andξ is a correction term introduced to take into account the inelastic scatterings
with atomic electrons and it is usually taken equal to unity; an additional correction toχcc

is given by Fano [8].
The Molière function is given as a series expansion,

fM(ϑ, B) = f (0)(ϑ)+ 1

B
f (1)(ϑ)+ 1

B2
f (2)(ϑ)+ · · · , (22)

where

f (n)(ϑ) = 1

n!

∫ ∞
0

J0(ηϑ)e
−η2/4

(
η2

4
ln
η2

4

)n

η · dη; (23)

J0 is the zeroth order Bessel function. In Eq. (23) forn= 0 we have a Gaussian curve

f (0)(ϑ) = 2e−ϑ
2
, (24)

but forn≥ 1 the Molière functions must be computed using numerical methods. Terms until
of order two proved to be sufficiently accurate.

Moli ère considered his theory valid forÄ0> 20. Originally derived as a small-angle
theory, Molière’s multiple-scattering theory has been modified by Bethe to predict accurately
large-angle scattering by multiplying the right side of Eq. (15) with a correction term√
θ/sinθ . The minimum step sizesmin required to ensure sufficient number of scatterings

is given by

smin = Ä0β
2

bc
[cm], (25)

with Ä0= 20, while the maximum step size derived by Bethe is

smax= E2β4

χcc ln(bcE2β2/χcc)
[cm]. (26)

For testing the extension of the alias sampling method, both cases of Moli`ere distribu-
tions, the two parametric formf (θ, T, s) and the single parameter formfM(ϑ, B), were
considered.

In the case of the single parameter form, due to the requirement of preparing only material
independent sampling arrangements for a unidimensional grid, the memory usage is kept
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FIG. 3. Comparison between Moli`ere function sampled distribution (vertical bars) and theoretical distribution
(continuous curve) for the sameB= 4.7 parameter value. The drawn surface represents thefM (ϑ, B) distribution
as it is given by the sampling arrangements grid points withB= 3.4, respectivelyB= 5.9.

low, but the sampling speed suffers because additional calculations of the deflection angle
as a function of the reduced angle are required and, also, a rejection loop for the Bethe
correction factor

√
θ/sinθ must be considered. A graphical comparison between a sampled

distribution and the corresponding theoretical curvefM(ϑ, B) is shown in Fig. 3.
The use of the two parametric form has the advantage of direct sampling of angular

deflection, but with a large amount of memory usage because, for each material considered
in the simulation, sampling arrangements for a two-dimensional grid must be prepared. An
example of using this form for sampling of Moli`ere multi-scatter angle distribution is given
in Fig. 4.

FIG. 4. Comparison between the sampled values (histogram) of the two parametric form of Moli`ere multiple-
scattering distribution,f (θ, T, s) and the theoretical distribution (continuous curve) for 2.8 MeV electrons travers-
ing 3.0× 10−2 cm of germanium. Dotted lines represent the distributions at the four parametric points between
which the interpolations were made; these are the corners of the square with left-bottom corner (2.42 MeV,
2.74× 10−2 cm) and right-top corner (3.00 MeV, 4.22× 10−2 cm).
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TABLE I

Comparison of Running Speed Obtained with Different Versions of Alias Sam-

pling Technique and with the Classical Approach Used in EGS, for the Moli`ere

Electron Multiple-Scattering Distribution

Running speed (generated values per second)

Method 386DX 40 MHz Pentium 133 MHz Digital Alpha 233 MHz

C-EGS 4.12× 103 4.91× 104 8.05× 104

AS1 3.32× 103 4.34× 104 7.20× 104

AS1s 4.40× 103 5.04× 104 8.43× 104

AS2 3.54× 103 5.96× 104 8.68× 104

AS2s 6.39× 103 7.99× 104 14.35× 104

Note.In all cases the same random number generator was used.

A test program was written and run on UNIX systems (Linux on Intel platforms and
Digital UNIX on a Digital Alpha workstation). Several cases were tested. The first cases
were the single parameter form of the Moli`ere distribution (AS1) and the two parameter
form (AS2), in which for the PDF interpolation inside the selected intervals the method
given by Eqs. (5) and (6) was used. Second, two simplified versions (AS1s, AS2s), which
use Eq. (3) for the PDF interpolation, were considered; in this case it is no longer necessary
to store the probability density values(p(k,1)i , p(k,2)i , etc.), and the loss of precision can be
compensated by taking more refined grids. Finally, a classical approach (C-EGS) based on
the method used in the EGS system, as described in [9], was considered.

A comparison of the running speed results is presented in Table I. As was mentioned
before, in the case of the single parameter form (AS1, AS1s) the sampling speed suffers
due to the additional calculations made. An important factor for improving the scores is
the speed of retrieving data from memory. This fact is emphasized by comparing the scores
obtained on the 386 system with those obtained on the enhanced systems based on Pentium
or Digital Alpha. During the generation of a random variable, repeated readings of data
spread on a relatively large amount of computer memory are made. Therefore special care
must be taken during implementation, in order to use efficiently the CPU internal or external
memory cache. The use of structured types of data and dynamical memory allocation to
group together data needed for sampling of a certain random variable value (alias sampling
arrangements and grids with interpolation points) can lead to a significant increase in speed,
up to doubling it, according to our experience. Additional optimizations, which were not
considered here, such as direct sampling of memory addresses, rather than operating with
indices for intervals sampling, can also speed up the algorithm.

5. CONCLUSION

A method of direct interpolation for sampling of random variables with parametrized
probability distributions that allows the use of the alias sampling technique is presented.
It takes advantage of modern computer architectures with large amounts of cheap and
fast memories by using discrete representations of probability distribution functions. The
sampling is done by fast interpolation techniques involving only elementary logical and
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arithmetical operations, allowing for a higher degree of accuracy, as the grid spacing is
controlled by the user.

This method can be successfully used as an alternative to the sampling arrangements
commonly used in Monte Carlo codes where, for complex probability distributions, from
case to case, after a careful study of function properties, combinations of sampling tech-
niques (e.g., superposition, rejection and inverse function methods) are used. The method
proposed here allows one to develop flexible Monte Carlo simulation codes, while the ap-
plication of specific sampling techniques like those mentioned above makes the resultant
code strongly dependent on the theories used.
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